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INTRODUCTION 

A detailed knowledge of the thermodynamics and gas dynamics of propellant 
gases both before and after departing from the gun barrel is required before the 
numerous problems associated with high performance cannons and projectiles can be 
solved. Among these problems are: 

1. Muzzle flash which, although common to all guns, is of particular 
significance in artillery weapons 

2. Barrel erosion in tank guns caused by high performance ammunition 

3. Muzzle blast which can be detrimental to howitzers and large caliber 
cannons 

The specific motivation for this program was muzzle flash. Propellant gases 
emerging from a gun muzzle interact with the surrounding atmosphere and produce 
an intense light emission. Earlier detailed investigations of muzzle flash (refs 
1 through 7) revealed three distinct luminous regions separated in both space and 
time: primary (Rl), intermediate (R2), and secondary (R3). Although the exact 
mechanisms associated with the individual flash events are not completely under- 
stood, it is generally assumed that Rl is comprised of the hot, highly compressed 
gas column driven from the gun tube. As these high pressure gases expand adia- 
batically, due to the large pressure gradient between the two flow fields, they 
are cooled and their luminosity disappears. Overexpanded gases are then recom- 
pressed and heated by passage through a shock front. They are comprised of con- 
siderable combustible constituents but little oxygen; however, they can be re- 
ignited if their temperature is raised high enough. If this occurs, the subse- 
quent luminosity is termed R2. When combustion at this stage is incomplete 
because of insufficient oxygen, the blast field may continue to develop and, as 
ambient air is entrained, another combustion zone is formed which results in 
R3. Enough combustible material remains at this point that the R3 event has been 
reported to release as much energy as the initial in-bore combustion (ref 8). 

These ignition and combustion events are not well understood and little 
experimental data is available to support even limited phenomenological modeling 
efforts (ref 3). Traditionally, evaluation of specific gas properties is made 
indirectly and is generally limited to the direct measurement of internal pres- 
sure and temperature on the gun barrel surface. The flow-field gas temperature 
and other thermodynamic properties are then inferred from these simple surface 
measurements with the aid of certain interior ballistics assumptions. Because of 
the inherent limitations of this approach, the detailed information required for 
accurate modeling of propellant behavior both in and out of the gun barrel is not 
available. Optical techniques such as high speed, schlieren, and shadow-graphic 
photography (ref 5) are useful in flow visualization but are intrinsically inca- 
pable of providing quantitative data. More sophisticated optical techniques, 
such as emission and absorption spectroscopy and multicolor pyrometry, are capa- 
ble of providing quantitative data but these are integrated over the entire 
sample region. 



Several nonintruslve, high spatial resolution techniques for probing molecu- 
lar species present in the high temperature flow field at the muzzle of a gun are 
available to charge and ballistic designers. Although potassium and sodium reso- 
nance lines (ref 3), fluorescence and spontaneous Raman (ref 9), and other opti- 
cal techniques have been employed with varying degrees of success, each has cer- 
tain limitations and problems and may not offer the designer a simple, informa- 
tive, and reliable measurement of simultaneous temperature and concentration. 

Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy has become one of 
the leading nonlinear spectroscopic techniques for nonintruslve molecular probing 
in hostile environments (refs 10, 14, and 15). The technique is particularly 
well suited for probing of transient, turbulent, incandescent, and particle-laden 
combustion environments such as propellant flames (ref 11), internal combustion 
engines (ref 12), and jet engine afterburners (refs 10 and 13). The main advan- 
tage of CARS over other popular spectroscopic diagnostics is signal generation 
efficiency (ref 13). With CARS, this efficiency is several orders-of-magnitude 
greater than spontaneous Raman, and the coherent signal is collimated, whereas 
other techniques produce signal photons over 4 IT steradians. In addition to 
these general advantages, the CARS technique offers several others: capability 
for high spatial resolution (1 mm or better), good accuracy (1% routinely 
achieved with N- CARS thermometry), rapid data acquisition and processing (tens 
of seconds), and high temporal resolution(l0~8 seconds) for single pulse experi- 
ments. In most classical CARS experiments, evaluations of the post-flame zone 
composition and characteristics are determined by measuring the temperature and 
the concentration of major equilibrium products (i.e., N-, CO, C02, H2, and 
H^O). Classical spatial mapping of these flame systems is accomplished using the 
CARS technique (ref 16), but the same technique can be applied as a tool for 
evaluating combustion mechanisms or reaction pathways (ref 17). 

BACKGROUND 

The theory of CARS and its practical experimental applications have been 
extensively reviewed (ref 16). Briefly, the basis of CARS is the nonlinear 
response through the third order susceptibility of a homogeneous medium upon 
which waves of the pump laser beam (a^) and the Stokes laser beam (a)2) are inci- 

dent. Vibrational resonant enhancement (CARS signal) is observed if the differ- 
ence between the frequencies of Uj and u2 are equivalent to a real Raman-active 

vibrational frequency of a given subject molecule. The observed CARS spectrum is 
proportional to the square of the modulus of the third order susceptibility term, 
which is the sum of a resonant term, x (related to a nuclear displacement term), 
and a nonresonant term, x (related tro electronic displacement). The tempera- 
ture and concentration of the resonant species can be determined since the CARS 
signal at u)^ = 2a)1 - U)2 indicates the Boltzman distribution of that molecule. 

However, a very thorough knowledge of both the spectroscopic parameters of the 
species of interest (the contribution through x ) and the species composition of 

the gas phase (contribution through the nonresonant susceptibility) (ref 16) is 
required for proper modeling. 

Extensive iterative fitting procedures are necessary to determine the con- 
centration and temperature of species when the gas composition is not known. 



Before this extensive modeling and fitting exercise, only qualitative information 
can be derived regarding approximate temperatures if some very general approxima- 
tions are made regarding signal generation (x . X > etc.) as a function of the 

r  nr 
spatial variation of the resonant species. Difficulties in understanding the 
distribution of the resonant species and its effect on the intensity and shape of 
the generated spectra can be minimized by the use of a refinement of the CARS 
technique called BOXCARS (ref 16). However, the greater level of experimental 
complexity coupled with the significantly reduced signal intensity characteristic 
of the BOXCARS' configuration makes the application of the simpler colinear CARS 
attractive for probing hostile combustion environments (refs 13 and 17) such as 
the muzzle flash investigated. Therefore, the colinear configuration was se- 
lected for these feasibility experiments with the knowledge that no certain tem- 
perature or species concentration assignments can be made with any degree of 
confidence as a result of the spatial averaging over temperature, concentration, 
and composition gradients. 

The CARS measurements are often performed in a closed vessel or on a partly 
shielded flame to minimize any uncertainties introduced by the surrounding atmo- 
sphere. (It is difficult to shield or evacuate the atmosphere from the region 
around the flash event of a gun.) Therefore, a model species must be selected 
that is not expected to be present anywhere except within the flash-related flow 
field. H2 is well suited to be the target molecule for this application because 
of its absence from the atmosphere and its anticipated presence in the subject 
flow field (ref 3). Furthermore, CARS spectroscopic analysis at wavelengths 
corresponding to ^ Q-branches is attractive because the Q-branch lines are very 
narrow and no interference by other species is expected. Moreover, considerable 
modeling and experimental efforts that are directly applicable have already been 
extended on this molecule (ref 18). 

EXPERIMENTAL 

Spectroscopy 

CARS spectra were generated using the colinear experimental arrangement 
shown in figure 1. The frequency output of a Quanta-Ray DCR-1A Nd:YAG laser at 
1.06 microns (700 mJ) was doubled to produce the pump beam (a^) at 0.532 microns 
(250 mJ) with a bandwidth of near 1 wave number. The Ui is divided with the 50% 
beam splitter (BS1), leaving about 125 mJ available at this wavelength for prob- 
ing. The dye laser employed is a Quanta-Ray PDL-1 which incorporates side 
pumped, flowing cells of an oscillator, pre-amplifier, and amplifier design. The 
dye laser was operated broadband using Exciton LDS-698 dissolved in ethanol with 
oscillator and amplifier molar concentrations of 1.5 x 10-3 and 5.8 x 10 , 
respectively. To shift the output towards shorter wavelengths, Exciton DCM was 
also dissolved in ethanol with oscillator and amplifier concentrations of 1.5 x 
10 and 1.4 x 10 , respectively, and added to the LDS-698 in small amounts 
while the dye laser output was monitored. At 13% dilution (by volume), the dye 
laser output_(u2) was centered at about 6880 A (14,535 cm-1) with a bandwidth of 
about 210 cm  (FWHM) and an intensity of approximately 23 mJ. 



The UJ1 and 0)2 beams are made colinear with the aid of a reflecting dichroic 
mirror at Mj (M) and a second dichroic (DC) with Rmx at (flj (5300 A) and T 
at (02 (6000 A). The colinear beams are then focused with a 50-mm focal length 
lens (LI) and recollimated with an identical lens (L2). The three beams are then 
separated with a prism (P), and Uj and u)2 are dumped in a beam trap. The CARS 
signal, 0)3, is then focused and introduced into a fiber optic cable and delivered 
to a 1/4-m monochromator. The fiber used in these experiments is a fused silica/ 
silica design of 1,000-micron diameter, installed in an armored cable.* The 
signal emerging from the 10-ft fiber optic cable is recollimated and focused onto 
the 100-micron entrance slit of the monochromator, equipped with a 1800 line/mm 
grating. Signal detection is made by a Princeton Applied Research silicon inten- 
sified tube (SIT) detector and a controller (PAR model 1216). 

Data acquisition was made by both a Nicolet model 4094 and model 2092 digi- 
tal oscilloscopes acting in sample and hold modes. The broadband detection was 
of low resolution with the FWHM of the calibration Krypton lines near ojg being 8 
cm wide with a resolution of 3.2 cm per channel on the model 2092, equivalent 
to 0.66 cm-1 per channel on the model 4094. 

Sample flame measurements were made in a simple H2 diffusion flame which 
further aided calibration of the system. Typical unreduced spectra are shown in 
figure 2 for the diffusion flame; figure 3 for room temperature flowing t^. No 
attempt was made to model these colinear spectra to determine temperature during 
these experiments. However, comparison of the data of figure 2 to the data 
reported by Vanderhoff and Kotlar (ref 18) shows general Q-branch spacing agree- 
ment, as is expected. With this configuration and laser intensities, the CARS 
signal was of sufficient intensity to be visible to the unaided eye, which 
greatly simplified alignment of the fiber optic cable and associated optics. As 
a result, a 0.6 optical density (O.D.) filter was required to sufficiently atten- 
uate the signal before it was used in the monochromator. However, during actual 
experiments with the gun, this filter was removed after the appropriate adjust- 
ments were completed with the H2 flame in the test position. 

MANN Gun 

A fully instrumented 7.62-mm MANN gun was modified to accept a special 
firing mechanism (fig. 4). The gun was activated remotely because the primary 
laser system operated continuously at 10 Hz and the gun had to be fired relative 
to this time base to maintain laser beam integrity. The receiver and stand were 
modified to include the mechanical trigger system comprised of the rope, pulley, 
and solenoid apparatus. A network of flip-flops was assembled to monitor the 
pulse train generated by the timing circuits of the laser and to trigger various 
peripheral devices including the data acquisition and the firing sequence. The 
laser is monitored by the triggering logic and the PAR model 1216 is synchronized 
to this time base. Therefore, the video output of the SIT is read after each 
laser pulse but only recorded by the digital scopes for the laser pulse synchro- 
nized with the gun event. 

Manufactured by General Fiber Optics, Caldwell, New Jersey. 



Because of the variability of the gun's firing (overall delay of 520 ms, 
jitter of ± 20 ms), the statistical probability of having the 10-ras laser pulse 
occur within the timeframe of the gun event is very low. Of the hundreds of 
shots fired, only one yielded fully interpretable spectra. Part of this undesir- 
able overall ignition jitter was caused by the triggering mechanism (fig. 3). 
However, every gun system has an intrinsic firing delay and associated jitter, 
although several orders-of-magnitude less than those experienced with the experi- 
mental system. Due to the kinematics of the linkages involved, a mechanical 
triggering system will inevitably experience delay and variability. Therefore, 
while the delay and jitter experienced were unsuitable for this experiment, they 
were reasonable for the design of the mechanical system and were subsequently 
used. 

The spectroscopy was verified in the laboratory and details of the trig- 
gering approach developed before the equipment was moved to the test area (fig. 
5). To minimize the shock loading and the accumulation of soot and dirt on the 
laser optics, the bulk of the laser hardware was installed in the laser room and 
a hole drilled in the common wall between the two rooms. Only a minimum number 
of optical components were located in the immediate area of the gun. These com- 
ponents were mounted on two optical rails installed on independent mounts. The 
rail holding the pair of lenses and the beam separation, turning prism, were 
fixed to the same mount that positioned the gun. The second rail, containing the 
two beam dumps, signal beam conditioning optics, and the fiber optic cable, were 
installed on a heavy-duty camera tripod. The CARS signal was communicated to the 
spectrometer located in the adjacent room by means of the fiber optic cable and 
associated optics. 

Alignment of the optics was facilitated with the aid of a simple H2 dif- 
fusion flame placed directly in front of the gun muzzle. With the flame burning 
and the O.D. filter in position, the alignment of the optics could be optimized 
based on the intensity of the generated CARS signal. Minor adjustments were made 
after each firing as the focusing lenses (LI and L2) were displaced slightly by 
the shock loading. Generally, alignment was required only on the turning prism 
(PI).  The general experimental procedure was as follows: 

1. H2 flame was positioned and lit 

2. CARS signal intensity on the monochromator was checked 

3. Optics were adjusted as required to maximize intensity 

4. Laser was switched to standby, flame removed, and gun loaded 

5. Laser operation was resumed and firing sequence started 

RESULTS 

Because of experimental limitations and timing difficulties, only two gun- 
firing experiments yielded examples of HL Q-branch spectra.  Of these, only one 



data set included interpretable data resolved temporally relative to the muzzle 
flash occurrence. However, many observations and conclusions can still be drawn 
from the limited IL, data as well as the occurrence and intensity of the nonreso- 
nant background. 

The overall timing and temporal resolution of the gun-related events is 
shown in figure 6. Because the breech pressure transducer was not calibrated, it 
only registered the ignition event in the timing logic circuits. A special mic- 
rophone, designed to sense only the appearance of the initial blast wave, was 
situated within 1 foot of the muzzle. Its output, a step change in voltage, is 
included on the same upper trace as the breech pressure. The lower trace shows 
the output of a 1P28 phototube fitted with 1.2 O.D. filters and located about 3 
feet from the muzzle. The phototube was aimed so that both the muzzle flash and 
the laser light scattered from the focusing lenses and the other optical surfaces 
were within its field of view. From the upper trace, the time associated with 
the emergence of the blast wave from the muzzle was about 1.3 ms measured from 
the peak recorded breech pressure. The muzzle flash recorded by the phototube 
occurred at about the same time that the blast wave registered, which was typi- 
cal. The laser fired about 200 MS before the luminous event was recorded by the 
phototube. 

The unreduced spectrum from the same experiment (fig. 7) clearly shows the 
presence of H^ during the muzzle flash sequence. A similar unreduced spectra 
from another shot made at the same initial timing settings is shown in figure 8 
but the exact timing details were not recorded. Comparison of the unreduced 
spectra of the H, diffusion flame (fig. 2) and the EL from muzzle flash (figs. 7 
and 8) shows similar resonant enhancement in the region around 436 nm. The data 
suggest that the resonant enhancement of the CARS background was produced during 
the flash event. Furthermore, from the data in figures 2 and 3, the observed 
spectral peaks in this region can only be associated with H2 Q-branch transitions 
(ref 18). It must be concluded that the shape of the spectra shown in figures 7 
and 8 was governed by the Boltzman population distribution of the Q-branch tran- 
sitions of H2. In these experiments, the presence of the large nonresonant back- 
ground was partly due to colinear phase matching and relatively low H? concentra- 
tions in addition to other contributions. 

The unreduced spectra of a different experiment where the laser pulse 
occurred at 1.3 ms before the appearance of visible flash is shown in figure 9. 
Only the large background was recorded since ^ was evidently not present as no 
resonant enhancement was observed. The laser pulse (fig. 10) occurred about 
250 ys past the visible portion of the flash event; the nonresonant background is 
clearly present but no evidence of resonant enhancement exists. Significantly, 
the intensity of the nonresonant background is greatly reduced from that shown in 
figure 9 as only the central, most intense portion of the background was 
recorded. Two possible explanations are immediately apparent to account for this 
attenuation: 

1. Since the second example (fig. 10) occurred after the visible portion 
of the muzzle flash event, it is probable that particles and soot were present in 
the flow field. Examination of spark shadowgraphs (fig. 11) taken during a dif- 
ferent, unrelated series of experiments but with the same caliber gun confirmed 
the nature of the flow field.  From these shadowgraphs, a dense, particle- and 



soot-laden flow field developed before the projectile emerged from the gun 
tube. This partially transmitting flow field could easily attenuate the inci- 
dent u»j and 0)2 laser beams, reducing the CARS efficiency. 

2. Since the physical interaction of the blast wave with the optical 
mounts was evolved, it was necessary to realign the gun range optics after each 
experiment. Although the degree of realignment was not extreme, CARS efficiency 
was strongly dependent on perfect alignment and any deviation would cause a sig- 
nificant reduction in the resultant signal intensity. Therefore either one or 
more of these conditions caused the observed signal attenuation during and after 
the flash event. However, based on previous experiments (refs 1 thorough 3), it 
was not anticipated that significant concentration of H2 would be present. The 
fact that CARS measurements of H2 may not be practical this late in the flash 
sequence is of no consequence to the present series of experiments. 

CONCLUSIONS 

Colinear Coherent Anti-Stokes Raman Scattering (CARS) as a diagnostic tech- 
nique has been successfully demonstrated on a practical combustion system. The 
reported experiments verified the feasibility of the concept by applying it to a 
specific problem: generalized muzzle flash. In addition to the successful com- 
pletion of the experiment, numerous technical problems were documented which 
require resolution before a more comprehensive series of experiments is begun. 
Specifically, the problem areas include: 

1. Gun and Event Triggering. The technique used in this series of exper- 
iments was based on firing the gun at the laser's internally generated time base 
and is therefore, unsuitable for high temporal resolution spectroscopy. As the 
actual experimental window probed in time was not predictable and therefore not 
deducible in advance, the acquisition of data from this technique was fortu- 
itous. Therefore, the technology to provide a probe beam with documented integ- 
rity needs to be developed. This type of approach is currently being investi- 
gated. 

2. Data Acquisition and Interpretation. Numerous experimental difficul- 
ties were responsible for the uncertainty in the wavelength assignments of the 
reported spectra. Normally, this data acquisition and reduction is accomplished 
with a specially designed multichannel analyzer. Because of time and equipment 
limitations, this traditional method was not available. Therefore, the alternate 
approach was developed and shows good promise for future success, provided the 
required data manipulation tasks can be assigned and completed by a local mini- 
computer. The hardware and software are currently being developed to provide 
this capability. 

3. Spatial Uncertainty of Colinear CARS. A significant limitation char- 
acteristic of colinear versus other CARS configurations is the uncertainty of the 
signal generation in space. Because of the large distance over which the probe 
beams interact, the characteristically large background signal produced is 
responsible for the relatively large signal which encourages applications in 



hostile combustion environments. However, since the CARS signal is produced over 
a large volume, a high degree of uncertainty is introduced because of the spatial 
concentration variations of the resonanting species that exist in a complex flow 
field. Because of this uncertainty, any temperature assignments based on 
colinear CARS spectra represent an average value corresponding to the resonant 
species spatial variations. The significance of these measurements cannot be 
determined until additional experimentation assessing the quantifying this effect 
is completed. 
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